

Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe

S2Biom Project Grant Agreement n°608622

S2Biom Deliverable D4.5

Bio2Match: a Tool for Matching Biomass and Conversion Technologies

15 August 2016

About the S2Biom project

The S2Biom project - Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe - supports the sustainable delivery of non-food biomass feedstock at local, regional and pan European level through developing strategies, and roadmaps that will be informed by a "computerized and easy to use" toolset (and respective databases) with updated harmonized datasets at local, regional, national and pan European level for EU28, Western Balkans, Moldova, Turkey and Ukraine. Further information about the project and the partners involved are available under <u>www.s2biom.eu</u>.

About this document

This report corresponds to D4.5 Final version of tool for viewing characteristics of technologies and matching biomass to pre-treatment and conversion technologies. It has been prepared by:

Due date of deliverable:	M36, 31 Aug 2016
Actual submission date:	15 Aug 2016
Start date of project:	01 Sep 2013
Duration:	36 months

Work package	4
Task	4.2
Lead contractor for this deliverable	BTG
Editor	Tijs Lammens
Authors	Tijs Lammens (BTG), Martijn Vis (BTG), Douwe van den Berg (BTG), Hugo de Groot (DLO), Bas Vanmeulebrouk (DLO), Igor Staritsky (DLO), Bert Annevelink (DLO), Wolter Elbersen (DLO), Berien Elbersen (DLO)
Quality reviewer	Martijn Vis (BTG)

Disse	emination Level	
PU	Public	PU
PP	Restricted to other programme participants (including the Commission Services)	
RE	Restricted to a group specified by the consortium (including the Commission Services):	
CO	Confidential, only for members of the consortium (including the Commission Services)	

Version	Date	Author(s)	Reason for modification	Status
1.0	28 Jun 2016	T.M. Lammens	Compilation of deliverable D4.5 based on various working documents. Sent to co-authors with request for feedback.	
1.1	22 Jul 2016	T.M. Lammens	Adapted on the basis of feedback from co-authors, sent for final quality review.	
1.2	15 Aug 2016	T.M. Lammens	Adapted on the basis of quality review.	submitted

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 608622.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

Executive Summary

This report describes 'Bio2Match', the biomass and conversion technology matching tool that was developed in S2Biom in task 4.2.

With Bio2Match we aim to provide support for the development of strategies for the best ways to realise a bio-based economy in Europe. The tool is intended to be user-friendly to biomass and/or technology experts, but specifically also to other stakeholders in the bio-based economy, such as for example policy makers or entrepreneurs. Bio2Match brings together a large collection of data on both biomass properties and technology characteristics, in an interactive way. It should be able to help stakeholders in the bio-based economy to gain insight in bio-based value chains .Bio2Match compares data on both biomass characteristics and technology demands, in an interactive way to find suitable matches. The tool was built using a database of conversion technologies (D2.3) and a database of biomass properties (D2.4). It can be used to match biomass feedstocks to conversion technologies, in order to support stakeholders in the bio-based economy to identify opportunities for further exploitation of existing indigenous biomass resources (across borders).

The tool is accessible online, via the S2Biom website.¹ In this report the methodology that the tool uses to match biomass to technologies is described, as well as the way the Bio2Match works in practice.

¹ <u>http://www.s2biom.eu/en/methodological-approaches/computerised-toolset.html</u>

Table of contents

Exe	cutive	Summary	. 4
1.	Introd	duction	. 6
2.	Tool	methodology	. 7
2	.1	Conversion technology properties and their classification	. 7
2	.2	Biomass properties and their classification	. 8
2	.3	Matching methodology	9
3.	Using	g Bio2Match	11
4.	Conc	lusion	16
5.	Refe	rences	16
Арр	endix	A. Overview of conversion technologies in the database	17
Арр	endix	B. Biomass categories in the biomass properties database	19

List of Figures

Figure 1. Simplified classification concept	. 7
Figure 2. The Bio2Match tool methodology	. 9
Figure 3. Screenshot overview of the user-interface of Bio2Match	11
Figure 4. Detail of the 'Match' central screen	12
Figure 5. Detail of the 'Matching overview' screen	12
Figure 6. Detail of the 'Matching overview' screen	13
Figure 7. Detail of the 'Matching characteristics' selection screen	13
Figure 8. Detail of the 'Product groups' selection screen	14
Figure 9. Detail of the 'Regions' selection screen	14
Figure 10. Printscreen of the S2Biom biomass supply database	14
Figure 11. Excerpt of the datasheet of one technology entry in the database	15

List of Tables

Table 1. Biomass properties and their classification	8
--	---

1. Introduction

Work package 4 of the S2Biom project has multiple objectives. The fourth objective of WP4 relates to this report, and is the following:

"... 4. To provide technical support to end-user for identifying the best match between a given amount of biomass with specific characteristics and the conversion or pre-treatment technology. ...'

This D4.5 report provides background information on the development of the biomass and conversion technology matching tool 'Bio2Match', that was developed to meet the objective as described above. Bio2Match is an openly accessible online tool.² It is based on a method developed to match the available lignocellulosic biomass resources to the most suitable conversion technologies, taking into account the pyramid of end use applications (materials, chemicals, fuels, energy), which was described in deliverable D2.2. Each conversion technology has specific biomass input requirements (e.g. cellulose and lignin content, ash and moisture content, particle size, density, etc.), while the composition and characteristics of biomass at roadside varies widely. Some biomass types can be used in many different technology options, while others are difficult to process or will need extensive pre-treatment.

The conversion technologies database was described in D2.3, "Database of biomass conversion technologies" and the biomass properties database in D2.4, "Explanatory note accompanying the database for standardized biomass characterization (and minimal biomass quality requirement for each biomass conversion technology)". A list of the conversion technologies in the database can be found in appendix A, and a list of the biomass types in the database can be found in appendix B.

In this report the methodology of the matching tool will be described, followed by a detailed description of the matching tool itself: what are the functionalities, how does it work, and what information can be drawn from it.

² Accessible via the S2Biom website: <u>http://www.s2biom.eu/en/methodological-approaches/computerised-toolset.html</u>

2. Tool methodology

The fundamental biomass characteristics that determine the value or risk of a certain type of biomass for a certain type of conversion system were identified. That way it was possible to match different biomass types to different conversion technologies.

Figure 1 shows a simplified classification concept: each feedstock type has qualities that are relevant for different types of conversion processes. Some of these (physical) characteristics (e.g. moisture content and size) can easily be modified (against some cost) by a basic treatment such as drying or chipping. Other characteristics are more 'fundamental', in the sense that they cannot easily be modified, for example the lignin content. Only these fundamental characteristics will be taken into account for the matching tool, while the physical characteristics (notably moisture content and bulk density) are taken into account as a cost factor rather than a showstopper.

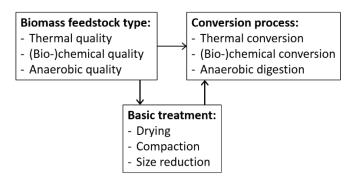


Figure 1. Simplified classification concept.

2.1 Conversion technology properties and their classification

For a **thermal conversion system**, the main feedstock-related challenges are related to corrosion, slagging & fouling, (higher) heating value, and NOx emissions. The chlorine content, ash deformation temperature, ash content, and nitrogen content were taken as the most important indicators for these potential issues.

A high ash content has a number of drawbacks: I) it does not contribute to energy production; II) it may increase wear of the machinery; III) it will generally cost money to discard ash; IV) stoves are generally designed to a limited ash amount. The nitrogen content is not so relevant for operation of the thermal conversion technology itself. But emission reduction measures make a conversion technology more expensive, and less economical to apply on a small scale (below 1 MWth). Therefore the nitrogen content is indeed relevant to take into account, especially for smaller conversion systems.

A **(bio-)chemical conversion system** was defined here as the pre-treatment of lignocellulosic biomass, followed by conversion of the polysaccharides into products like fuels or chemicals, but also as including processes from the pulp and paper industry. There are many fundamental characteristics that influence the potential success of (bio)chemical conversion of lignocellulose into fuels and chemicals. For our suitability approach we used the three most basic indicators: lignin content, carbohydrate (cellulose + hemicellulose) content, and ash content.

In **anaerobic digestion** a large part of the cost is determined by the size of the reactor. It is important that the yield per reactor volume per year is high enough. Therefore the methane yield per ton (or m³) of substrate is very relevant. The cost of the disposal of the digestate is also relevant. Therefore the potential applicability of the digestate (e.g. as fertilizer) was also taken into account.

2.2 Biomass properties and their classification

The classification of the fundamental biomass properties is shown in Table 1.

-					
Property	Unit		Classi	fication	
		1	2	3	4
Chlorine content	wt-% d.m.	<0.02	0.02-0.1	0.1-0.4	>0.4
Ash deformation temperature	°C	>1200	1000-1200	800-1000	<800
Ash content	wt-% d.m.	<1	1-3	3-10	>10
Nitrogen content	wt-% d.m.	<0.3	0.3-1	1-2.5	>2.5
Carbohydrates	wt-% d.m.	>65	50-65	30-50	<30
Lignin content	wt-% d.m.	<10	10-25	25-35	>35
Biogas yield	m³/ton a.r.	>300	150-300	50-150	<50
Digestate has an application		Yes	n.a.	n.a.	No

Table 1. Biomass properties and their classification.

For each technology, the minimum requirements were defined per property, in terms of which is the worst class that can be handled by that technology. Some processes will be able to handle only the highest quality (class 1) biomass, while others may be able to handle lower quality (e.g. class 3 or 4) biomass as well. Such a classification system should help to determine what type of conversion systems are needed to effectively utilise the available

biomass types in Europe under competitive conditions. For further details the reader is referred to deliverable D2.2, 'A selection method to match biomass types with the best conversion technologies'..

Biomass has physical properties as well, besides the types of fundamental properties that were described before. One can think of moisture content, particle size, bulk density, etc. These properties vary widely, and often depend on the method of harvesting with the end-use application already in mind. The physical properties that were taken into account for the matching tool are moisture content and bulk density. These are properties for which at roadside reliable data or estimates were available. They are quite important for the various conversion technologies, especially thermal conversion, given that the moisture content has a high impact on the lower heating value of a feedstock. For the physical properties threshold values rather than a classification system were used.

2.3 Matching methodology

The methodology for the Bio2Match tool was defined on the basis of the classification system described above, with fundamental characteristics (which cannot easily be modified) and physical characteristics (which can easily be modified). The procedure that the tool utilizes for matching each biomass and each technology is schematically shown in Figure 2.

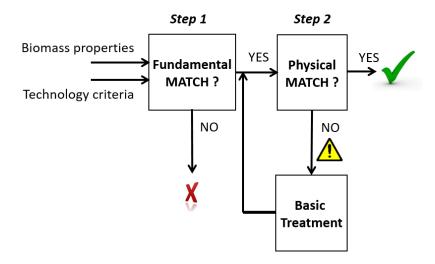
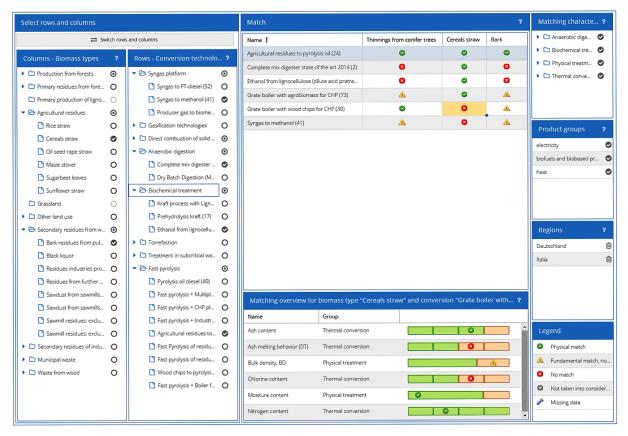


Figure 2. The Bio2Match tool methodology.

Depending on which type of technology is chosen (thermal, (bio-)chemical, anaerobic fermentation), the relevant fundamental properties of the biomass are first compared with the technology criteria (step 1). When each biomass property class has a lower or equal number than the technology criteria for those properties, there is a fundamental match, and the tool subsequently investigates the physical properties (step 2). When the values for the main



physical properties also match, the tool generates the answer "there is a match", indicated by a green traffic light symbol. When there is a fundamental match but no physical match, the tool generates the answer "there is a match, if the biomass receives basic treatment", indicated by a yellow exclamation mark. When there is no fundamental match, the tool does not proceed to step 2, but generates the answer "there is no match", indicated by a red traffic light symbol.

The way this tool looks in practice and how a user can work with it, is described in the next section.

3. Using Bio2Match

Figure 3. Screenshot overview of the user-interface of Bio2Match (details in the figures below).

The user-interface of Bio2Match is shown in Figure 3. The left two columns are for the selection of biomass types and technologies. The user can select any number of biomass types and conversion technologies that he or she is interested in. The central screen (Figure 4) then shows which technologies match to which types of biomass, based on the methodology that was described in section 2.2. A green check mark indicates a match, while a yellow exclamation mark indicates a fundamental but no physical match, and a red cross indicates that there is no match.

Match			
Name 🕇	Thinnings from conifer trees	Cereals straw	Bark
Agricultural residues to pyrolysis oil (24)	0	0	0
Complete mix digester state of the art 2014 (2)	8	٢	8
Ethanol from lignocellulose (dilute acid pretre	8	0	8
Grate boiler with agrobiomass for CHP (73)	۸	0	۸
Grate boiler with wood chips for CHP (30)	0	8	۸

Figure 4. Detail of the 'Match' central screen. Clicking on one of the symbols will reveal more details in the screen below (Figure 5).

The user can then select a single biomass-technology combination to find out why a feedstock does or does not match to a certain conversion technology. The matching classification system is visualized in the screen below the central screen (Figure 5) with four blocks per property, in which green blocks represent the biomass quality that the technology can handle. When e.g. only the left block (class 1) is green, it means the technology can handle only feedstock of class 1 quality, when e.g. all four blocks are green the technology can handle all quality classes. The matching symbol (green ok sign or red cross) represents the actual quality of the selected biomass. If the symbol is positioned in a green block there is a match and the label turns green, if it is situated in a red block that means the technology cannot handle that feedstock quality and the label turns red in the case of a fundamental property or yellow in the case of a physical property.

Matching overview for biomass type "Cereals straw" and conversion "Grate boiler with ?				
Name	Group			
Ash content	Thermal conversion			
Ash melting behavior (DT)	Thermal conversion			
Bulk density, BD	Physical treatment			
Chlorine content	Thermal conversion			
Moisture content	Physical treatment			
Nitrogen content	Thermal conversion			

Figure 5. Detail of the 'Matching overview' screen, for the biomass-technology combination highlighted in Figure 4.

This way the user can quickly identify which biomass property is responsible for a mismatch between a biomass type and a technology type. In the example of a grate boiler that is designed for the combustion of wood chips, cereal straw does not match as a feedstock, as depicted in Figure 4 (the highlighted biomass-technology combination). It can be seen in Figure

5 that the chlorine content and the ash melting temperature are responsible for the fact that there is no match between this type of biomass and this conversion technology.

Another outcome could be the case of a match, in which a user may find in the matching overview screen that a certain biomass type is of such high quality that it would be less than optimal to use it for a certain technology, because another biomass type of lower quality could also be converted by that same technology. An example of such a case is shown in Figure 6, which shows the matching overview pane for the combination of conifer stemwood and hydrothermal carbonisation. Such findings may help to optimise the use of biomass in a region.

Matching overview for biomass type "Stemwood from final fellings originating from conifer trees" a ?			
Name	Group		
Ash content	Thermal conversion		
Ash melting behavior (DT)	Thermal conversion		
Bulk density, BD	Physical treatment	\odot	
Chlorine content	Thermal conversion		
Moisture content	Physical treatment	٢	
Nitrogen content	Thermal conversion		

Figure 6. Detail of the 'Matching overview' screen, for the biomass-technology combination of stemwood from conifer trees and hydrothermal carbonization (overview not shown).

A feature of the tool is that the user can select which properties need to be taken into account for the matching. If an expert user finds that for his specific case (be it technology or feedstock) a certain property is not important, he or she can unselect that specific characteristic in the screen to the top right (detail in Figure 7), after which the tool recalculates which technologies match to which types of biomass without that property being taken into account.

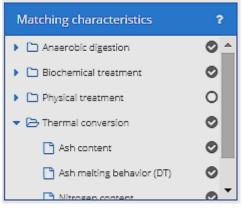


Figure 7. Detail of the 'Matching characteristics' selection screen.

Another feature is a product filter, which is situated in the small screen on the middle right side of the interface (detail in Figure 8). Here the user can select which types of products he or she is interested in. For example only heat or electricity, or in fuels or biobased products. This filter then automatically selects only the technologies that are able to produce those specific products.

Product groups	?
electricity	Ø
biofuels and biobased products	Ø
heat	۲

Figure 8. Detail of the 'Product groups' selection screen.

The last feature is the other small screen on the right side, which is a regions filter (Figure 9). This is a part of the tool that is linked to another tool on the S2Biom website, which is a biomass supply database (Figure 10). This database contains availability data of all the biomass categories that are in the Bio2Match tool as well. The user can select a certain region and then link to Bio2Match, which then automatically filters the biomass types that are relevant for that specific region.

Regions	?
Deutschland	向
Italia	ê

Figure 9. Detail of the 'Regions' selection screen.

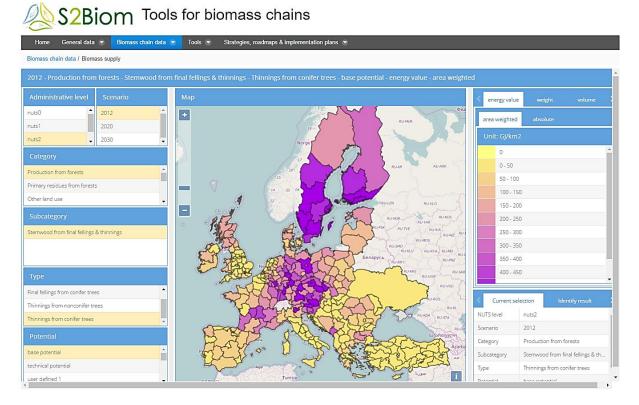


Figure 10. Printscreen of the S2Biom biomass supply database.

The tool and the conversion technology database that was described in Deliverable D2.3 are linked. For all the technologies in the matching tool the user can find more specific data in the database. An example of which is shown in Figure 11. So when a user identified an interesting technology for his or her case, he or she can easily look up that same technology in the database to find more detailed information on for example technology readiness level, investment costs, labour requirements, etc.

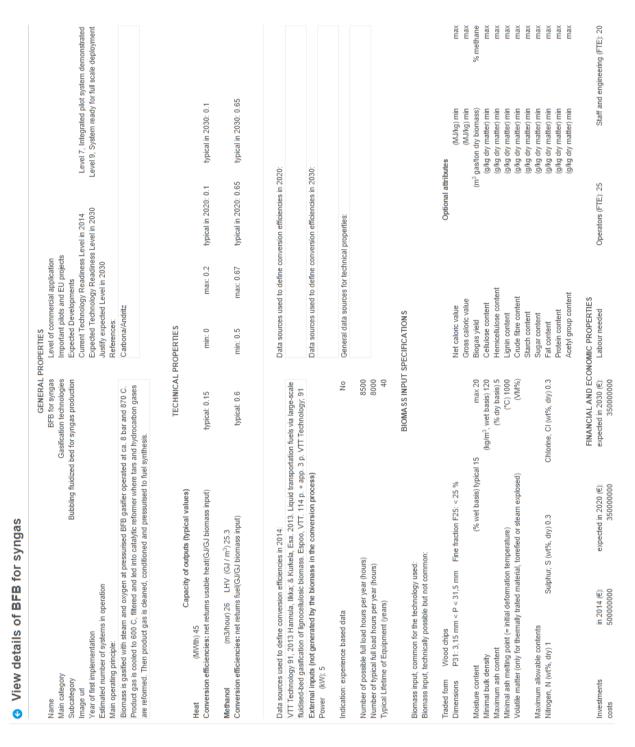


Figure 11. Excerpt of the datasheet of one technology entry in the database.

4. Conclusion

With Bio2Match we aim to provide support for the development of strategies for the best ways to realise a bio-based economy in Europe. The tool is intended to be user-friendly to biomass and/or technology experts, but specifically also to other stakeholders in the bio-based economy, such as for example policy makers and entrepreneurs. Bio2Match brings together a large collection of data on both biomass properties and technology characteristics, in an interactive way. It should be able to help stakeholders in the bio-based economy to gain insight in bio-based value chains.

5. References

M. Vis, R. te Raa, D. van den Berg, H. Knoef, E. Alakangas, J. Karki, A. Uslu, P. Harmsen, W. Elbersen, **S2BIOM Deliverable D2.1**, *A method for standardized biomass characterization and minimal biomass quality requirement for each biomass conversion technology* (2015).

W. Elbersen, R. Bakker, P. Harmsen, M., E. Alakangas, **S2BIOM Deliverable D2.2**, *A* selection method to match biomass types with the best conversion technologies (2015).

T. Lammens, M. Vis, R. te Raa, D. van den Berg, J. Kärki, A. Uslu, H. Mozaffarian, P. Harmsen, H. de Groot, **S2BIOM Deliverable D2.3**, *Database of biomass conversion technologies* (2016).

W. Elbersen, E. Alakangas, B. Elbersen, E. Annevelink, J. Ramirez Almeyda, T. Lammens, **S2BIOM Deliverable D2.4**, *Explanatory note accompanying the database for standardized biomass characterization (and minimal biomass quality requirement for each biomass conversion technology)* (2016).

Appendix A. Overview of conversion technologies in the database

The rationale behind the selection of the conversion technologies was described in deliverable D2.1, "A method for standardized biomass characterization and minimal biomass quality requirements for each biomass conversion technology", as well as which technologies were selected. Table A1 summarizes the conversion technologies that were taken up in the database.

In order to be able to match the technology requirements with biomass characteristics, the different technologies were categorized into three main categories, all with a different set of specifications, as described in deliverable D2.2, "A selection method to match biomass types with the best conversion technologies". The first category contains thermal conversion technologies, with requirements for corrosion, ash agglomeration (fouling), ash content, and NO_x emissions. The second category contains both chemical and biochemical processes that have requirements on the lignin, (hemi-) cellulose and ash content. The third category specifically contains anaerobic digestion, and has requirements for digestibility and biogas yield.

Each category is further split down into three levels, in order to provide sufficient level of detail to distinguish each technology. An example of this is for thermal conversion processes: one category (level 1) is 'direct combustion of solid biomass', with subcategory (level 2) 'fluidized bed combustion', and process name (level 3) Circulating Fluidized Bed direct combustion'.

Category	Subcategory	Process name						
	nologies							
	Fluidised bed combustion for CHP	BFB direct combustion						
	(steam cycle)	CFB direct combustion						
	Fixed bed combustion for heat	Grate boiler for heat						
	Fixed bed combustion for CHP (steam	Grate boiler with wood chips for CHP						
Direct combustion	cycle)	Grate boiler with agrobiomass for CHP						
of solid biomass	Direct co-combustion in coal fired power							
	plants	Co-firing in PC						
	Waste incinerators with energy recovery	Grate fired waste incinerator						
	Domestic pellet burners for heat	Pellet boiler for heat						
	Domestic residential batch fired stoves							
	for heat	Batch stove for heat						
	Circulating Fluidized bed for CHP (gas							
	engine)	CFB for CHP						
	Circulating Fluidized bed for IGCC	CFB for IGCC						
	Bubbling fluidized bed for CHP (gas							
	engine)	BFB for CHP						
Gasification	Circulating Fluidized bed for syngas							
technologies	production	CFB for syngas						
	Dual Fluidized bed for CHP (gas engine)	DFB for CHP						
	Dual Fluidized bed for syngas production	DFB for syngas						
	Entrained flow for syngas production	Entrained flow for syngas						
	Fixed bed (downdraft) for CHP (gas							
	engine)	Fixed bed for CHP						

Table A1 Conversion technologies described in the database.

	Fixed head (up due ft) direct sevels with	Final had direct construction
	Fixed bed (updraft), direct combustion	Fixed bed, direct combustion
	Bubbling fluidized bed for IGCC	BFB for IGCC
	Bubbling fluidized bed for syngas	
	production	BFB for syngas
	Fluidised bed gasification for methanol	
	production	Syngas to methanol
Syngas platform	Indirect gasification for SNG production	Producer gas to biomethane
	Fluidised bed gasification for FT-fuels	
	production	Syngas to FT-diesel
		Fresh wood chips to pyrolysis oil
	Pyrolysis plus boiler for heat and steam	Agricultural residues to pyrolysis oil
	i yrofysis plus boller for heat and steam	Pyrolysis oil to heat
		Pyrolysis oil to steam
	Pyrolysis and hydrogenation for diesel	
	fuel	Pyrolysis oil diesel
	Durolucis oil and diosal ongine for	Pyrolysis combustion engine (compression-
Fast pyrolysis	Pyrolysis oil and diesel engine for electricity	ignition)
	electricity	CHP Gas Turbine
	Pyrolysis plus boiler for heat and steam	Pyrolysis plus boiler for heat, integrated
	Pyrolysis plus boiler for heat and steam	Pyrolysis plus boiler for steam, integrated
	Pyrolysis oil and diesel engine for	Pyrolysis plus combustion engine,
	electricity	integrated
	Pyrolysis oil and diesel engine for	
	electricity	Pyrolysis plus CHP, integrated
Torrefaction	Moving bed reactor	torrefaction and pelletisation (TOP)
	(Bio-)chemical conversion te	-
Techniques from	Kraft process with LignoBoost process	Kraft process with Lignoboost
pulp and paper	Prehydrolysis Kraft process in water	
industry	phase	Prehydrolysis kraft
Chemical	Alkaline hydrolysis	Alkaline hydrolysis
pretreatment	Dilute acid hydrolysis	Dilute acid hydrolysis
Biochemical	Enzymatic hydrolysis	Enzymatic hydrolysis alkaline pretreated
hydrolysis and		Enzymatic hydrolysis acid pretreated
fermentation	Fermentation	Fermentation alkaline pretreated
Termentation	Fermentation	Fermentation acid pretreated
Riochomical		Ethanol from lignocellulose (dilute acid
Biochemical ethanol and	Ethanol production	pretreatment)
	Ethanol production	Ethanol from lignocellulose (alkaline
biobased products		pretreatment)
Treatment in		
subcritical water	Aqueous Phase Reforming	Aqueous Phase Reforming
	<u> </u>	
Annahi	Anaerobic digestion tech	nologies
Anaerobic	Complete mix disector	
digestion	Complete mix digester	Complete mix digester state of the art 2014
Anaerobic		
digestion	Plug flow digester	Dry Batch Digestion (MSW)

Abbreviations:

BFB: bubbling fluidized bed; CFB: circulating fluidized bed; CHP: combined heat and power; DFB: dual fluidized bed; FT: Fischer-Tropsch; IGCC: integrated gasification combined cycle; MSW: municipal solid waste; PC: pulverized coal-fired boiler; SNG: synthetic natural gas.

Appendix B. Biomass categories in the biomass properties database

Second level subcategories		Third level subcategories		Final level subcategories			
ID	Name	ID	Name	ID	Name		
11	Production from forests			1111	Stemwood from final fellings originating from nonconifer trees		
		111	Stemwood from final fellings	1112	Stemwood from final fellings originating from conifer trees		
			&thinnings	1113	Stemwood from thinnings originating from nonconifer trees		
				1114	Stemwood from thinnings originating from conifer trees		
12	Primary			1211	Logging residues from final fellings from nonconifer trees		
	residues from forests	121	121	sts	Logging ¹ residues from	1212	Logging residues from final fellings from conifer trees
					final fellings &thinnings	1213	Logging residues from thinnings from nonconifer trees
			en minige	1214	Logging residues from thinnings from conifer trees		
			Stumps from	1221	Stumps from final fellings originating from nonconifer trees		
		122 fina	final fellings	1222	Stumps from final fellings originating from conifer trees		
			&thinnings	1223	Stumps from thinnings originating from nonconifer trees		
				1224	Stumps from thinnings originating from conifer trees		

Table B1 Subcategories of first level category 1 "Forestry"

¹-In the sense of "Standard" logging residues, thus excluding stamps, on second level 121 and 122 are both "logging residues.

Table B2 Subcategories of second level category "21 Primary production of lignocellulosic biomass crops

Third I	Third level subcategories Final level subcategories		vel subcategories
ID	Name	ID	Name
		2111	Sweet and biomass sorghum (Annual grasses)
		2112	Miscanthus (Perennial grass)
	Energy grasses,	2113	Switchgrass (Perennial grass)
	annual & perennial	2114	Giant reed (Perennial grass)
211		2115	Cardoon (Perennial crop)
211	crops	2116	Reed Canary Grass (Perennial grass)
	Short rotation	2121	SRC Willow
212	coppice	2122	SRC Poplar
		2123	Other SRC

Table B3 Subcategories of second level category "22 Agricultural residues"

Third level subcategories Fin		Final lev	vel subcategories
ID	Name	ID Name	
		2211	Rice straw
		2212	Cereals straw
		2213	Oil seed rape straw
		2214	Maize stover
221	Straw/stubbles	2215	Sugarbeet leaves
		2216	Sunflower straw
		2221	Residues from vineyards
		2222	Residues from fruit tree plantations (apples, pears and soft fruit)
	Maadu muunaine 9	2223	Residues from olives tree plantations
000	Woody prunning &	2224	Residues from citrus tree plantations
222	orchards residues	2225	Residues from nuts plantations

Table B4 Subcategories of second level category "23 Grassland"

Third	level subcategories	Final level subcategories		
ID	Name	ID Name		
231	Grassland	Unused grassland cuttings (abandoned grassland, managed grasslands r 2311 for feed)		

Table B5 Subcategories of "3 Other Land use"

Third	level subcategories	Final level subcategories	
ID	Name	ID Name	
311	Biomass from other areas under landscape maintenance	3111	Grassy biomass from landscape maintenance (recreational and nature protection areas, dykes) Woody biomass from landscape maintenance (landscape elements)
312	Biomass from road side verges	3121 3122	Grassy biomass from road side verges Woody biomass from road side verges

Table B6 Subcategories of second level category 41 "Secondary residues from wood industries"

Third level subcategories		Final level subcategories	
ID	Name	ID	Name
		4111	Sawdust from sawmills from conifers
411	Saw mill	4112	Sawdust from sawmills from nonconifers
411	residues	4113	Sawmill residues: excluding sawdust, conifers
		4114	Sawmill residues: excluding sawdust, nonconifers
412	Other wood processing industry residues	4121	Residues from industries producing semi -finished wood based panels
		4122	Residues from further wood processing
413	Secondary residues from	4131	Bark residues from pulp and paper industry
413	pulp and paper industry	4132	Black liquor

Table B7 Subcategories of "42 Secondary residues of industry utilising agricultural products

Third	level subcategories	Final level subcategories	
ID	Name	ID	Name
421	By-products and residues from food and fruit processing industry Other industry by- products utilising	4211 4212 4221	Olive-stones Other by-products and residues from food and fruit processing industry Cotton acorn
	agricultural products	4221	Collon_acom
422		4222	Other industry by-products utilising agricultural products

Table B8 Subcategories of "Waste"

Second =1 subcatego		Final level subcategories	
ID	Name	ID Name	
		5111	Biowaste as part of integrally collected municipal waste: Biodegradable waste of not separately collected municipal waste (excluding textile and paper)
51/511	Biodegradable municipal waste	5112	Separately collected biowaste: Biodegradable waste of separately collected municipal waste (excluding textile and paper)
		5211	Hazardous post consumer wood
52/521	Post consumer wood	5212	Non hazardous post consumer wood